Close Menu

    Subscribe to Updates

    Get the latest creative news from FooBar about art, design and business.

    What's Hot

    LA immigration protests live updates: Trump deploys 2,000 National Guard members

    June 8, 2025

    Trump attends UFC championship fight in NJ, taking a break from politics, Musk feud

    June 8, 2025

    What to know about the much-anticipated Nintendo Switch 2 on launch day

    June 8, 2025
    Facebook X (Twitter) Instagram
    • Demos
    • Buy Now
    Facebook X (Twitter) Instagram YouTube
    14 Trends14 Trends
    Demo
    • Home
    • Features
      • View All On Demos
    • Buy Now
    14 Trends14 Trends
    Home » Exploring the structural changes driving protein function with BioEmu-1
    AI Features

    Exploring the structural changes driving protein function with BioEmu-1

    adminBy adminFebruary 20, 2025No Comments6 Mins Read0 Views
    Facebook Twitter Pinterest LinkedIn Telegram Tumblr Email
    Share
    Facebook Twitter LinkedIn Pinterest Email


    The image shows eight different 3D models of protein structures. Each model is color-coded with various segments in blue, green, orange, and other colors to highlight different parts of the protein.

    From forming muscle fibers to protecting us from disease, proteins play an essential role in almost all biological processes in humans and other life forms alike. There has been extraordinary progress in recent years toward better understanding protein structures using deep learning, enabling the accurate prediction of protein structures from their amino acid sequences. However, predicting a single protein structure from its amino acid sequence is like looking at a single frame of a movie—it offers only a snapshot of a highly flexible molecule. Biomolecular Emulator-1 (BioEmu-1) is a deep-learning model that provides scientists with a glimpse into the rich world of different structures each protein can adopt, or structural ensembles, bringing us a step closer to understanding how proteins work. A deeper understanding of proteins enables us to design more effective drugs, as many medications work by influencing protein structures to boost their function or prevent them from causing harm.

    One way to model different protein structures is through molecular dynamics (MD) simulations. These tools simulate how proteins move and deform over time and are widely used in academia and industry. However, in order to simulate functionally important changes in structure, MD simulations must be run for a long time. This is a computationally demanding task and significant effort has been put into accelerating simulations, going as far as designing custom computer architectures (opens in new tab). Yet, even with these improvements, many proteins remain beyond what is currently possible to simulate and would require simulation times of years or even decades. 

    Enter BioEmu-1 (opens in new tab)—a deep learning model that can generate thousands of protein structures per hour on a single graphics processing unit. Today, we are making BioEmu-1 open-source (opens in new tab), following our preprint (opens in new tab) from last December, to empower protein scientists in studying structural ensembles with our model. It provides orders of magnitude greater computational efficiency compared to classical MD simulations, thereby opening the door to insights that have, until now, been out of reach. BioEmu-1 is featured in Azure AI Foundry Labs (opens in new tab), a hub for developers, startups, and enterprises to explore groundbreaking innovations from research at Microsoft.

    Microsoft research podcast

    What’s Your Story: Lex Story

    Model maker and fabricator Lex Story helps bring research to life through prototyping. He discusses his take on failure; the encouragement and advice that has supported his pursuit of art and science; and the sabbatical that might inspire his next career move.


    Opens in a new tab

    We have enabled this by training BioEmu-1 on three types of data sets: (1) AlphaFold Database (AFDB) (opens in new tab) structures (2) an extensive MD simulation dataset, and (3) an experimental protein folding stability dataset (opens in new tab). Training BioEmu-1 on the AFDB structures is like mapping distinct islands in a vast ocean of possible structures. When preparing this dataset, we clustered similar protein sequences so that BioEmu-1 can recognize that a protein sequence maps to multiple distinct structures. The MD simulation dataset helps BioEmu-1 predict physically plausible structural changes around these islands, mapping out the plethora of possible structures that a single protein can adopt. Finally, through fine-tuning on the protein folding stability dataset, BioEmu-1 learns to sample folded and unfolded structures with the right probabilities.

    Figure 1: BioEmu-1 predicts diverse structures of LapD protein unseen during training. We sampled structures independently and reordered the samples to create a movie connecting two experimentally known structures.

    Combining these advances, BioEmu-1 successfully generalizes to unseen protein sequences and predicts multiple structures. In Figure 1, we show that BioEmu-1can predict structures of the LapD protein (opens in new tab) from Vibrio cholerae bacteria, which causes cholera. BioEmu-1 predicts structures of LapD when it is bound and unbound with c-di-GMP molecules, both of which are experimentally known but not in the training set. Furthermore, our model offers a view on intermediate structures, which have never been experimentally observed, providing viable hypotheses about how this protein functions. Insights into how proteins function pave the way for further advancements in areas like drug development.

    The figure compares Molecular Dynamics (MD) simulation and BioEmu-1, and shows that BioEmu-1 can emulate the equilibrium distribution 100,000 times faster than running a MD simulation to full convergence. The middle part of the figure shows that the 2D projections of the structure distributions obtained from MD simulation and BioEmu-1 are nearly identical. The bottom part of the figure shows three representative structures from the equilibrium distribution.
    Figure 2: BioEmu-1 reproduces the D. E. Shaw research (DESRES) simulation of Protein G accurately with a fraction of the computational cost. On the top, we compare the distributions of structures obtained by extensive MD simulation (left) and independent sampling from BioEmu-1 (right). Three representative sample structures are shown at the bottom.

    Moreover, BioEmu-1 reproduces MD equilibrium distributions accurately with a tiny fraction of the computational cost. In Figure 2, we compare 2D projections of the structural distribution of D. E. Shaw research (DESRES) simulation of Protein G (opens in new tab) and samples from BioEmu-1. BioEmu-1 reproduces the MD distribution accurately, while requiring 10,000-100,000 times fewer GPU hours.

    The left panel of the figure shows a scatter plot of the experimental folding free energies ΔG against those predicted by BioEmu-1. The plot shows a good correlation between the two. The right panel of the figure shows folded and unfolded structures of a protein.
    Figure 3: BioEmu-1 accurately predicts protein stability. On the left, we plot the experimentally measured free energy differences ΔG against those predicted by BioEmu-1. On the right, we show a protein in folded and unfolded structures.

    Furthermore, BioEmu-1 accurately predicts protein stability, which we measure by computing the folding free energies—a way to quantify the ratio between the folded and unfolded states of a protein. Protein stability is an important factor when designing proteins, e.g., for therapeutic purposes. Figure 3 shows the folding free energies predicted by BioEmu-1, obtained by sampling protein structures and counting folded versus unfolded protein structures, compared against experimental folding free energy measurements. We see that even on sequences that BioEmu-1 has never seen during training, the predicted free energy values correlate well with experimental values.

    Professor Martin Steinegger (opens in new tab) of Seoul National University, who was not part of the study, says “With highly accurate structure prediction, protein dynamics is the next frontier in discovery. BioEmu marks a significant step in this direction by enabling blazing-fast sampling of the free-energy landscape of proteins through generative deep learning.”

    We believe that BioEmu-1 is a first step toward generating the full ensemble of structures that a protein can take. In these early days, we are also aware of its limitations. With this open-source release, we hope scientists will start experimenting with BioEmu-1, helping us carve out its potentials and shortcomings so we can improve it in the future. We are looking forward to hearing how it performs on various proteins you care about.

    Acknowledgements

    BioEmu-1 is the result of highly collaborative team effort at Microsoft Research AI for Science. The full authors: Sarah Lewis, Tim Hempel, José Jiménez-Luna, Michael Gastegger, Yu Xie, Andrew Y. K. Foong, Victor García Satorras, Osama Abdin, Bastiaan S. Veeling, Iryna Zaporozhets, Yaoyi Chen, Soojung Yang, Arne Schneuing, Jigyasa Nigam, Federico Barbero, Vincent Stimper, Andrew Campbell, Jason Yim, Marten Lienen, Yu Shi, Shuxin Zheng, Hannes Schulz, Usman Munir, Ryota Tomioka, Cecilia Clementi, Frank Noé

    Opens in a new tab





    Source link

    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email
    admin
    • Website

    Related Posts

    BenchmarkQED: Automated benchmarking of RAG systems – Microsoft Research

    June 5, 2025

    What AI’s impact on individuals means for the health workforce and industry

    June 2, 2025

    FrodoKEM: A conservative quantum-safe cryptographic algorithm

    May 27, 2025

    Abstracts: Zero-shot models in single-cell biology with Alex Lu

    May 22, 2025

    Abstracts: Aurora with Megan Stanley and Wessel Bruinsma

    May 21, 2025

    Collaborators: Healthcare Innovation to Impact

    May 20, 2025
    Leave A Reply Cancel Reply

    Demo
    Top Posts

    ChatGPT’s viral Studio Ghibli-style images highlight AI copyright concerns

    March 28, 20254 Views

    Best Cyber Forensics Software in 2025: Top Tools for Windows Forensics and Beyond

    February 28, 20253 Views

    An ex-politician faces at least 20 years in prison in killing of Las Vegas reporter

    October 16, 20243 Views

    Laws, norms, and ethics for AI in health

    May 1, 20252 Views
    Don't Miss

    LA immigration protests live updates: Trump deploys 2,000 National Guard members

    June 8, 2025

    The Trump administration is deploying the California National Guard in response to protests in Los…

    Trump attends UFC championship fight in NJ, taking a break from politics, Musk feud

    June 8, 2025

    What to know about the much-anticipated Nintendo Switch 2 on launch day

    June 8, 2025

    Musk appears to delete X posts claiming Trump was in Epstein files

    June 8, 2025
    Stay In Touch
    • Facebook
    • Twitter
    • Pinterest
    • Instagram
    • YouTube
    • Vimeo

    Subscribe to Updates

    Get the latest creative news from SmartMag about art & design.

    Demo
    Top Posts

    ChatGPT’s viral Studio Ghibli-style images highlight AI copyright concerns

    March 28, 20254 Views

    Best Cyber Forensics Software in 2025: Top Tools for Windows Forensics and Beyond

    February 28, 20253 Views

    An ex-politician faces at least 20 years in prison in killing of Las Vegas reporter

    October 16, 20243 Views
    Stay In Touch
    • Facebook
    • YouTube
    • TikTok
    • WhatsApp
    • Twitter
    • Instagram
    Latest Reviews
    Demo
    About Us
    About Us

    Your source for the lifestyle news. This demo is crafted specifically to exhibit the use of the theme as a lifestyle site. Visit our main page for more demos.

    We're accepting new partnerships right now.

    Email Us: info@example.com
    Contact: +1-320-0123-451

    Facebook X (Twitter) Pinterest YouTube WhatsApp
    Our Picks

    LA immigration protests live updates: Trump deploys 2,000 National Guard members

    June 8, 2025

    Trump attends UFC championship fight in NJ, taking a break from politics, Musk feud

    June 8, 2025

    What to know about the much-anticipated Nintendo Switch 2 on launch day

    June 8, 2025
    Most Popular

    ChatGPT’s viral Studio Ghibli-style images highlight AI copyright concerns

    March 28, 20254 Views

    Best Cyber Forensics Software in 2025: Top Tools for Windows Forensics and Beyond

    February 28, 20253 Views

    An ex-politician faces at least 20 years in prison in killing of Las Vegas reporter

    October 16, 20243 Views

    Subscribe to Updates

    Get the latest creative news from FooBar about art, design and business.

    14 Trends
    Facebook X (Twitter) Instagram Pinterest YouTube Dribbble
    • Home
    • Buy Now
    © 2025 ThemeSphere. Designed by ThemeSphere.

    Type above and press Enter to search. Press Esc to cancel.