Close Menu

    Subscribe to Updates

    Get the latest creative news from FooBar about art, design and business.

    What's Hot

    4-year-old bitten by mountain lion at national park: Officials

    July 22, 2025

    X says French accusations of data tampering and fraud are politically motivated

    July 22, 2025

    Bill Cosby speaks to ABC News about late co-star Malcolm-Jamal Warner

    July 22, 2025
    Facebook X (Twitter) Instagram
    • Demos
    • Buy Now
    Facebook X (Twitter) Instagram YouTube
    14 Trends14 Trends
    Demo
    • Home
    • Features
      • View All On Demos
    • Buy Now
    14 Trends14 Trends
    Home » A new way to edit or generate images | MIT News
    Aritifical Intelligence

    A new way to edit or generate images | MIT News

    adminBy adminJuly 21, 2025No Comments7 Mins Read0 Views
    Facebook Twitter Pinterest LinkedIn Telegram Tumblr Email
    Share
    Facebook Twitter LinkedIn Pinterest Email



    AI image generation — which relies on neural networks to create new images from a variety of inputs, including text prompts — is projected to become a billion-dollar industry by the end of this decade. Even with today’s technology, if you wanted to make a fanciful picture of, say, a friend planting a flag on Mars or heedlessly flying into a black hole, it could take less than a second. However, before they can perform tasks like that, image generators are commonly trained on massive datasets containing millions of images that are often paired with associated text. Training these generative models can be an arduous chore that takes weeks or months, consuming vast computational resources in the process.

    But what if it were possible to generate images through AI methods without using a generator at all? That real possibility, along with other intriguing ideas, was described in a research paper presented at the International Conference on Machine Learning (ICML 2025), which was held in Vancouver, British Columbia, earlier this summer. The paper, describing novel techniques for manipulating and generating images, was written by Lukas Lao Beyer, a graduate student researcher in MIT’s Laboratory for Information and Decision Systems (LIDS); Tianhong Li, a postdoc at MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL); Xinlei Chen of Facebook AI Research; Sertac Karaman, an MIT professor of aeronautics and astronautics and the director of LIDS; and Kaiming He, an MIT associate professor of electrical engineering and computer science.

    This group effort had its origins in a class project for a graduate seminar on deep generative models that Lao Beyer took last fall. In conversations during the semester, it became apparent to both Lao Beyer and He, who taught the seminar, that this research had real potential, which went far beyond the confines of a typical homework assignment. Other collaborators were soon brought into the endeavor.

    The starting point for Lao Beyer’s inquiry was a June 2024 paper, written by researchers from the Technical University of Munich and the Chinese company ByteDance, which introduced a new way of representing visual information called a one-dimensional tokenizer. With this device, which is also a kind of neural network, a 256×256-pixel image can be translated into a sequence of just 32 numbers, called tokens. “I wanted to understand how such a high level of compression could be achieved, and what the tokens themselves actually represented,” says Lao Beyer.

    The previous generation of tokenizers would typically break up the same image into an array of 16×16 tokens — with each token encapsulating information, in highly condensed form, that corresponds to a specific portion of the original image. The new 1D tokenizers can encode an image more efficiently, using far fewer tokens overall, and these tokens are able to capture information about the entire image, not just a single quadrant. Each of these tokens, moreover, is a 12-digit number consisting of 1s and 0s, allowing for 212 (or about 4,000) possibilities altogether. “It’s like a vocabulary of 4,000 words that makes up an abstract, hidden language spoken by the computer,” He explains. “It’s not like a human language, but we can still try to find out what it means.”

    That’s exactly what Lao Beyer had initially set out to explore — work that provided the seed for the ICML 2025 paper. The approach he took was pretty straightforward. If you want to find out what a particular token does, Lao Beyer says, “you can just take it out, swap in some random value, and see if there is a recognizable change in the output.” Replacing one token, he found, changes the image quality, turning a low-resolution image into a high-resolution image or vice versa. Another token affected the blurriness in the background, while another still influenced the brightness. He also found a token that’s related to the “pose,” meaning that, in the image of a robin, for instance, the bird’s head might shift from right to left.

    “This was a never-before-seen result, as no one had observed visually identifiable changes from manipulating tokens,” Lao Beyer says. The finding raised the possibility of a new approach to editing images. And the MIT group has shown, in fact, how this process can be streamlined and automated, so that tokens don’t have to be modified by hand, one at a time.

    He and his colleagues achieved an even more consequential result involving image generation. A system capable of generating images normally requires a tokenizer, which compresses and encodes visual data, along with a generator that can combine and arrange these compact representations in order to create novel images. The MIT researchers found a way to create images without using a generator at all. Their new approach makes use of a 1D tokenizer and a so-called detokenizer (also known as a decoder), which can reconstruct an image from a string of tokens. However, with guidance provided by an off-the-shelf neural network called CLIP — which cannot generate images on its own, but can measure how well a given image matches a certain text prompt — the team was able to convert an image of a red panda, for example, into a tiger. In addition, they could create images of a tiger, or any other desired form, starting completely from scratch — from a situation in which all the tokens are initially assigned random values (and then iteratively tweaked so that the reconstructed image increasingly matches the desired text prompt).

    The group demonstrated that with this same setup — relying on a tokenizer and detokenizer, but no generator — they could also do “inpainting,” which means filling in parts of images that had somehow been blotted out. Avoiding the use of a generator for certain tasks could lead to a significant reduction in computational costs because generators, as mentioned, normally require extensive training.

    What might seem odd about this team’s contributions, He explains, “is that we didn’t invent anything new. We didn’t invent a 1D tokenizer, and we didn’t invent the CLIP model, either. But we did discover that new capabilities can arise when you put all these pieces together.”

    “This work redefines the role of tokenizers,” comments Saining Xie, a computer scientist at New York University. “It shows that image tokenizers — tools usually used just to compress images — can actually do a lot more. The fact that a simple (but highly compressed) 1D tokenizer can handle tasks like inpainting or text-guided editing, without needing to train a full-blown generative model, is pretty surprising.”

    Zhuang Liu of Princeton University agrees, saying that the work of the MIT group “shows that we can generate and manipulate the images in a way that is much easier than we previously thought. Basically, it demonstrates that image generation can be a byproduct of a very effective image compressor, potentially reducing the cost of generating images several-fold.”

    There could be many applications outside the field of computer vision, Karaman suggests. “For instance, we could consider tokenizing the actions of robots or self-driving cars in the same way, which may rapidly broaden the impact of this work.”

    Lao Beyer is thinking along similar lines, noting that the extreme amount of compression afforded by 1D tokenizers allows you to do “some amazing things,” which could be applied to other fields. For example, in the area of self-driving cars, which is one of his research interests, the tokens could represent, instead of images, the different routes that a vehicle might take.

    Xie is also intrigued by the applications that may come from these innovative ideas. “There are some really cool use cases this could unlock,” he says. 



    Source link

    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email
    admin
    • Website

    Related Posts

    MIT Learn offers “a whole new front door to the Institute” | MIT News

    July 21, 2025

    AI Testing and Evaluation: Reflections

    July 21, 2025

    Implementing on-demand deployment with customized Amazon Nova models on Amazon Bedrock

    July 21, 2025

    The unique, mathematical shortcuts language models use to predict dynamic scenarios | MIT News

    July 21, 2025

    Building cost-effective RAG applications with Amazon Bedrock Knowledge Bases and Amazon S3 Vectors

    July 20, 2025

    Manage multi-tenant Amazon Bedrock costs using application inference profiles

    July 20, 2025
    Leave A Reply Cancel Reply

    Demo
    Top Posts

    ChatGPT’s viral Studio Ghibli-style images highlight AI copyright concerns

    March 28, 20254 Views

    Best Cyber Forensics Software in 2025: Top Tools for Windows Forensics and Beyond

    February 28, 20253 Views

    An ex-politician faces at least 20 years in prison in killing of Las Vegas reporter

    October 16, 20243 Views

    Laws, norms, and ethics for AI in health

    May 1, 20252 Views
    Don't Miss

    4-year-old bitten by mountain lion at national park: Officials

    July 22, 2025

    A 4-year-old child was attacked by a mountain lion at a national park in Washington…

    X says French accusations of data tampering and fraud are politically motivated

    July 22, 2025

    Bill Cosby speaks to ABC News about late co-star Malcolm-Jamal Warner

    July 22, 2025

    WATCH: Sterling K. Brown talks 'Paradise' season 2

    July 21, 2025
    Stay In Touch
    • Facebook
    • Twitter
    • Pinterest
    • Instagram
    • YouTube
    • Vimeo

    Subscribe to Updates

    Get the latest creative news from SmartMag about art & design.

    Demo
    Top Posts

    ChatGPT’s viral Studio Ghibli-style images highlight AI copyright concerns

    March 28, 20254 Views

    Best Cyber Forensics Software in 2025: Top Tools for Windows Forensics and Beyond

    February 28, 20253 Views

    An ex-politician faces at least 20 years in prison in killing of Las Vegas reporter

    October 16, 20243 Views
    Stay In Touch
    • Facebook
    • YouTube
    • TikTok
    • WhatsApp
    • Twitter
    • Instagram
    Latest Reviews
    Demo
    About Us
    About Us

    Your source for the lifestyle news. This demo is crafted specifically to exhibit the use of the theme as a lifestyle site. Visit our main page for more demos.

    We're accepting new partnerships right now.

    Email Us: info@example.com
    Contact: +1-320-0123-451

    Facebook X (Twitter) Pinterest YouTube WhatsApp
    Our Picks

    4-year-old bitten by mountain lion at national park: Officials

    July 22, 2025

    X says French accusations of data tampering and fraud are politically motivated

    July 22, 2025

    Bill Cosby speaks to ABC News about late co-star Malcolm-Jamal Warner

    July 22, 2025
    Most Popular

    ChatGPT’s viral Studio Ghibli-style images highlight AI copyright concerns

    March 28, 20254 Views

    Best Cyber Forensics Software in 2025: Top Tools for Windows Forensics and Beyond

    February 28, 20253 Views

    An ex-politician faces at least 20 years in prison in killing of Las Vegas reporter

    October 16, 20243 Views

    Subscribe to Updates

    Get the latest creative news from FooBar about art, design and business.

    14 Trends
    Facebook X (Twitter) Instagram Pinterest YouTube Dribbble
    • Home
    • Buy Now
    © 2025 ThemeSphere. Designed by ThemeSphere.

    Type above and press Enter to search. Press Esc to cancel.