Close Menu

    Subscribe to Updates

    Get the latest creative news from FooBar about art, design and business.

    What's Hot

    Man throws sandwich at Border Patrol officer in DC, faces federal assault charges

    August 13, 2025

    Is the Fed ready to cut interest rates? Experts weigh in

    August 13, 2025

    A new way to test how well AI systems classify text | MIT News

    August 13, 2025
    Facebook X (Twitter) Instagram
    • Demos
    • Buy Now
    Facebook X (Twitter) Instagram YouTube
    14 Trends14 Trends
    Demo
    • Home
    • Features
      • View All On Demos
    • Buy Now
    14 Trends14 Trends
    Home » A new way to test how well AI systems classify text | MIT News
    Aritifical Intelligence

    A new way to test how well AI systems classify text | MIT News

    adminBy adminAugust 13, 2025No Comments6 Mins Read0 Views
    Facebook Twitter Pinterest LinkedIn Telegram Tumblr Email
    Share
    Facebook Twitter LinkedIn Pinterest Email



    Is this movie review a rave or a pan? Is this news story about business or technology? Is this online chatbot conversation veering off into giving financial advice? Is this online medical information site giving out misinformation?

    These kinds of automated conversations, whether they involve seeking a movie or restaurant review or getting information about your bank account or health records, are becoming increasingly prevalent. More than ever, such evaluations are being made by highly sophisticated algorithms, known as text classifiers, rather than by human beings. But how can we tell how accurate these classifications really are?

    Now, a team at MIT’s Laboratory for Information and Decision Systems (LIDS) has come up with an innovative approach to not only measure how well these classifiers are doing their job, but then go one step further and show how to make them more accurate.

    The new evaluation and remediation software was developed by Kalyan Veeramachaneni, a principal research scientist at LIDS, his students Lei Xu and Sarah Alnegheimish, and two others. The software package is being made freely available for download by anyone who wants to use it.

    A standard method for testing these classification systems is to create what are known as synthetic examples — sentences that closely resemble ones that have already been classified. For example, researchers might take a sentence that has already been tagged by a classifier program as being a rave review, and see if changing a word or a few words while retaining the same meaning could fool the classifier into deeming it a pan. Or a sentence that was determined to be misinformation might get misclassified as accurate. This ability to fool the classifiers makes these adversarial examples.

    People have tried various ways to find the vulnerabilities in these classifiers, Veeramachaneni says. But existing methods of finding these vulnerabilities have a hard time with this task and miss many examples that they should catch, he says.

    Increasingly, companies are trying to use such evaluation tools in real time, monitoring the output of chatbots used for various purposes to try to make sure they are not putting out improper responses. For example, a bank might use a chatbot to respond to routine customer queries such as checking account balances or applying for a credit card, but it wants to ensure that its responses could never be interpreted as financial advice, which could expose the company to liability. “Before showing the chatbot’s response to the end user, they want to use the text classifier to detect whether it’s giving financial advice or not,” Veeramachaneni says. But then it’s important to test that classifier to see how reliable its evaluations are.

    “These chatbots, or summarization engines or whatnot are being set up across the board,” he says, to deal with external customers and within an organization as well, for example providing information about HR issues. It’s important to put these text classifiers into the loop to detect things that they are not supposed to say, and filter those out before the output gets transmitted to the user.

    That’s where the use of adversarial examples comes in — those sentences that have already been classified but then produce a different response when they are slightly modified while retaining the same meaning. How can people confirm that the meaning is the same? By using another large language model (LLM) that interprets and compares meanings. So, if the LLM says the two sentences mean the same thing, but the classifier labels them differently, “that is a sentence that is adversarial — it can fool the classifier,” Veeramachaneni says. And when the researchers examined these adversarial sentences, “we found that most of the time, this was just a one-word change,” although the people using LLMs to generate these alternate sentences often didn’t realize that.

    Further investigation, using LLMs to analyze many thousands of examples, showed that certain specific words had an outsized influence in changing the classifications, and therefore the testing of a classifier’s accuracy could focus on this small subset of words that seem to make the most difference. They found that one-tenth of 1 percent of all the 30,000 words in the system’s vocabulary could account for almost half of all these reversals of classification, in some specific applications.

    Lei Xu PhD ’23, a recent graduate from LIDS who performed much of the analysis as part of his thesis work, “used a lot of interesting estimation techniques to figure out what are the most powerful words that can change the overall classification, that can fool the classifier,” Veeramachaneni says. The goal is to make it possible to do much more narrowly targeted searches, rather than combing through all possible word substitutions, thus making the computational task of generating adversarial examples much more manageable. “He’s using large language models, interestingly enough, as a way to understand the power of a single word.”

    Then, also using LLMs, he searches for other words that are closely related to these powerful words, and so on, allowing for an overall ranking of words according to their influence on the outcomes. Once these adversarial sentences have been found, they can be used in turn to retrain the classifier to take them into account, increasing the robustness of the classifier against those mistakes.

    Making classifiers more accurate may not sound like a big deal if it’s just a matter of classifying news articles into categories, or deciding whether reviews of anything from movies to restaurants are positive or negative. But increasingly, classifiers are being used in settings where the outcomes really do matter, whether preventing the inadvertent release of sensitive medical, financial, or security information, or helping to guide important research, such as into properties of chemical compounds or the folding of proteins for biomedical applications, or in identifying and blocking hate speech or known misinformation.

    As a result of this research, the team introduced a new metric, which they call p, which provides a measure of how robust a given classifier is against single-word attacks. And because of the importance of such misclassifications, the research team has made its products available as open access for anyone to use. The package consists of two components: SP-Attack, which generates adversarial sentences to test classifiers in any particular application, and SP-Defense, which aims to improve the robustness of the classifier by generating and using adversarial sentences to retrain the model.

    In some tests, where competing methods of testing classifier outputs allowed a 66 percent success rate by adversarial attacks, this team’s system cut that attack success rate almost in half, to 33.7 percent. In other applications, the improvement was as little as a 2 percent difference, but even that can be quite important, Veeramachaneni says, since these systems are being used for so many billions of interactions that even a small percentage can affect millions of transactions.

    The team’s results were published on July 7 in the journal Expert Systems in a paper by Xu, Veeramachaneni, and Alnegheimish of LIDS, along with Laure Berti-Equille at IRD in Marseille, France, and Alfredo Cuesta-Infante at the Universidad Rey Juan Carlos, in Spain. 



    Source link

    Share. Facebook Twitter Pinterest LinkedIn Tumblr Email
    admin
    • Website

    Related Posts

    Applications Now Open for $60,000 NVIDIA Graduate Fellowship Awards

    August 13, 2025

    Applications Now Open for $60,000 NVIDIA Graduate Fellowship Awards

    August 13, 2025

    Build a conversational natural language interface for Amazon Athena queries using Amazon Nova

    August 13, 2025

    FLUX.1 Kontext NIM Microservice Now Available

    August 13, 2025

    Understanding AI Agents: The Future of Intelligent Automation

    August 13, 2025

    Train and deploy AI models at trillion-parameter scale with Amazon SageMaker HyperPod support for P6e-GB200 UltraServers

    August 12, 2025
    Leave A Reply Cancel Reply

    Demo
    Top Posts

    ChatGPT’s viral Studio Ghibli-style images highlight AI copyright concerns

    March 28, 20254 Views

    Best Cyber Forensics Software in 2025: Top Tools for Windows Forensics and Beyond

    February 28, 20253 Views

    An ex-politician faces at least 20 years in prison in killing of Las Vegas reporter

    October 16, 20243 Views

    Laws, norms, and ethics for AI in health

    May 1, 20252 Views
    Don't Miss

    Man throws sandwich at Border Patrol officer in DC, faces federal assault charges

    August 13, 2025

    A Washington, D.C., man is charged with assaulting a federal officer after they say he…

    Is the Fed ready to cut interest rates? Experts weigh in

    August 13, 2025

    A new way to test how well AI systems classify text | MIT News

    August 13, 2025

    Applications Now Open for $60,000 NVIDIA Graduate Fellowship Awards

    August 13, 2025
    Stay In Touch
    • Facebook
    • Twitter
    • Pinterest
    • Instagram
    • YouTube
    • Vimeo

    Subscribe to Updates

    Get the latest creative news from SmartMag about art & design.

    Demo
    Top Posts

    ChatGPT’s viral Studio Ghibli-style images highlight AI copyright concerns

    March 28, 20254 Views

    Best Cyber Forensics Software in 2025: Top Tools for Windows Forensics and Beyond

    February 28, 20253 Views

    An ex-politician faces at least 20 years in prison in killing of Las Vegas reporter

    October 16, 20243 Views
    Stay In Touch
    • Facebook
    • YouTube
    • TikTok
    • WhatsApp
    • Twitter
    • Instagram
    Latest Reviews
    Demo
    About Us
    About Us

    Your source for the lifestyle news. This demo is crafted specifically to exhibit the use of the theme as a lifestyle site. Visit our main page for more demos.

    We're accepting new partnerships right now.

    Email Us: info@example.com
    Contact: +1-320-0123-451

    Facebook X (Twitter) Pinterest YouTube WhatsApp
    Our Picks

    Man throws sandwich at Border Patrol officer in DC, faces federal assault charges

    August 13, 2025

    Is the Fed ready to cut interest rates? Experts weigh in

    August 13, 2025

    A new way to test how well AI systems classify text | MIT News

    August 13, 2025
    Most Popular

    ChatGPT’s viral Studio Ghibli-style images highlight AI copyright concerns

    March 28, 20254 Views

    Best Cyber Forensics Software in 2025: Top Tools for Windows Forensics and Beyond

    February 28, 20253 Views

    An ex-politician faces at least 20 years in prison in killing of Las Vegas reporter

    October 16, 20243 Views

    Subscribe to Updates

    Get the latest creative news from FooBar about art, design and business.

    14 Trends
    Facebook X (Twitter) Instagram Pinterest YouTube Dribbble
    • Home
    • Buy Now
    © 2025 ThemeSphere. Designed by ThemeSphere.

    Type above and press Enter to search. Press Esc to cancel.